Fracciones (Conjunto Q)

¿Cómo podemos repartir 1 pizza en partes iguales entre 4 amigos? Si crees que no puedes resolverlo, no te desanimes!!! El resultado es un número que antes no conocías: una fracción. Las fracciones, nos permitirán resolver problemas como este. Te invitamos a conocerlas!

  • Segundo Ciclo
  • Última actualización: 13/06/2012
  • Imprimir

Relación de orden en Q

En fracciones también es posible establecer un orden entre ellas, es decir, podemos encontrar fracciones mayores, menores o iguales que otras.

Debes saber algunas reglas que te ayudarán a comparar fracciones:

1. Si dos o más fracciones tienen igual numerador, es mayor la que tiene menor denominador.

Ejemplo:

Foto 18

2. Si dos o más fracciones tienen igual denominador, es mayor la que tiene mayor numerador.

Ejemplo:

Foto 19

3. Dos fracciones son equivalentes cuando representan lo mismo.

Ejemplo:

Foto 20   Foto 21

4. Además podemos comparar en la recta numérica, fracciones con distintos numeradores y denominadores. Es más grande la fracción que está ubicada más a la derecha en la recta numérica.

Representemos las siguientes fracciones en la recta numérica:

Foto 22

Como podrás darte cuenta, estas fracciones son menores o iguales a 1, ya que, el numerador es menor o igual que el denominador. Por esta razón, al representarlas en la recta numérica, todas se encuentran entre 0 y 1 y es mayor la que se encuentra más cerca de 1.

Foto 23

Representemos ahora fracciones cuyo numerador es mayor al denominador: fracciones impropias.

Foto 24

Primero debemos transformarlas a número mixto:

Foto 25

Foto 26

Como verás, en fracciones impropias, será mayor aquella cuya parte entera del número mixto sea más alta. Ahora, si tenemos dos números mixtos cuya parte entera sea igual, entonces debemos comparar la fracción que la acompaña y será finalmente mayor, la que se encuentre más a la derecha en la recta numérica.

Representemos ahora las siguientes fracciones en una recta numérica:

Foto 27

Foto 28

Como te habrás dado cuenta, todas estas fracciones están ubicadas en el mismo lugar en la recta numérica, es decir, son equivalentes.